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A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional,
nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability
of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still
unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal
tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application
programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application
plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to
improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing
and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization
in geocomputation and spatial analysis.

1. Introduction

The process during which spatial entities achieve the optimal
status under certain constraints is referred to as spatial opti-
mization [1]. It has recently become one of the critical issues
in geoscience research since most practical spatial planning
problems can be regarded as a typical spatial optimization
process, such as spatial sampling optimization [2], location
and allocation problems [3, 4], path optimization problems
[5, 6], land-use optimization [7, 8], and protected natural
areas zoning [9]. Spatial optimization generally involves
various high-dimensional, nonlinear, and complex relation-
ships. The majority of the spatial analyses or geostatistical
models provided by geographical information systems (GIS),
however, are limited in their ability to address such problems.
Under such circumstances, artificial intelligence (AI) has
been advocated and has proven to be promising in spatial
optimization.

Up to now, a number of AI methods have been proposed,
such as genetic algorithms (GA) [10–12], simulated annealing
(SA) [13, 14], ant colony optimization (ACO) [15, 16], particle

swarm optimization (PSO) [12, 17], tabu search [18], and
artificial immune system (AIS) [9, 19]. Among these artificial
intelligence algorithms, AIS has proven to be reliable and
efficient in various cases, such as remote sensing imagery
processing [20], spatial data mining [21], routing problems
[22], location problems [23], and land-use dynamics [9, 19,
24].

AIS can be defined as intelligent and adaptive compu-
tational systems inspired by theoretical immunology prin-
ciples and mechanisms in order to solve real-world prob-
lems [25, 26]. Although the previous studies have greatly
contributed to AIS development, the algorithms described
were too problem-specific, since scholars merely focused on
one specific problem. Few reports have been released that
have proposed a unified algorithm framework or developed
an integrated computational platform. Therefore, this paper
aims to address these concerns by developing a universal tool
for spatial optimization. Our specific objective is to develop
an integrated, extensible, and customizable computational
framework called AITSO that can be utilized for solving
different optimization problems.
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Table 1: Comparison of the popular AI tools for solving spatial optimization problems.

Tools Programming
language Algorithms Have GIS functions Have application

programming interfaces
Have graphical
user interfaces

GeoSOS C# Ant colony optimization Yes No Yes

OAT Java Clonal selection algorithms, B-cell algorithm,
and so forth No Yes Yes

EO C++ Evolution algorithms, particle swarm
optimization, and so forth No Yes No

GAtool MATLAB Genetic algorithms No Yes Yes

2. Available Tools/Libraries for Solving
Optimization Problems

During the past decade, researchers have developed many
spatial decision support systems for use in solving spatial
optimization problems [27, 28], and most of them are
problem-specific. There are, however, few universal software
packages that have been specifically designed for solving
spatial optimization problems. On the other hand, many
software or libraries have implemented AI algorithms, which
have been widely used in solving optimization problems.
Therefore, it has been necessary to gather some details about
the existing AI tools in order to get some useful experience
to help with the development of AITSO.Themain features of
the best known and most popular intelligence optimization
platforms or libraries are listed in Table 1.

Among these platforms or libraries, GeoSOS (Geo-
graphical Simulation and Optimization System, website:
http://www.geosimulation.cn/) is the only one that has been
designed for solving geographical simulation and spatial
optimization problems [29]. It was developed based on the
open-source GIS MapWindow components with basic GIS
functions such as the handling and displaying of spatial data.
GeoSOS has integrated many intelligence models, including
cellular automata (CA), agent-based models (ABMs), and
swarm intelligence models (SIMs). It is a powerful tool for
solving urban simulation and land-use planning problems.
However, the optimization models implemented in GeoSOS
were still too problem-specific. Consequently, in some cases,
it might be incapable of meeting the requirements of model-
ing various complicated spatial optimization problems.

Another universal tool for solving optimization problems
is OAT (the Optimization Algorithm Toolkit, website: http://
optalgtoolkit.sourceforge.net/). OAT is an open-source soft-
ware package written in Java that integrates many of the
computational intelligence optimization algorithms, includ-
ing GA, ACO, SA, PSO, and CSA. It was developed based
on a very flexible architecture to meet the demands of
users with different roles, including interested amateurs,
software developers, and research scientists. Users can adapt
the universal tool to their specific problem in two ways in
this architecture: (1) modify the source code of OAT to
make it suitable for the problem or (2) use OAT as a library
and develop new application plugins based on the abstract
classes or user interfaces defined by OAT [30, 31]. Generally,
OAT has provided an open, universal, and integrated

platform for solving optimization problems and comes with
a user-friendly interface. However, OAT uses “domains” to
organize problems which are independent of each other.
That means users still have to rewrite the stopping conditions
and immune operators for their optimization problems.
Therefore, the architecture of OAT is not conducive to
the reusing and sharing of immune operators since the
algorithms are designed coupled with the optimization
problems. Nevertheless, it has provided some useful
experience for us that has helped with the design of AITSO.

EO (Evolutionary Objects, website: http://eodev.source-
forge.net/) is another open-source library for solving opti-
mization problems. EO has built a generic algorithm frame-
work and implemented a well-designed library, which was
written in ANSI-C++ and is based upon template tech-
nology. In the algorithm framework of EO, the algorithms
are divided into several operators, and the operators are
further categorized into two subsets: “evolution engine”
and “representation-specific operators.” The former is only
concerned with the fitness of the individuals, and it is totally
independent of the specific problems. The latter is coupled
with specific problems and depends on some particular
data structures [32]. This design makes it possible to solve
different problems in a unified algorithm framework, and it
is conducive to code reusing. Researchers can adapt the uni-
versal algorithms to their specific problems by defining their
own data structures and implementing the “representation-
specific operators,” and the “evolution engine” does not
require redevelopment. However, EO does not offer a user
interface, and all these functions are provided in the form
of programming libraries. Generally, EO can be considered
as a semifinished product, and it is mainly designed for
developers who need to integrate the library into their own
decision support system to solve a particular problem.

The GAtool is one of the tools in MATLAB’s global
optimization toolbox. It has provided researchers with the
ability to apply genetic algorithm techniques to optimization
problems in theMATLAB environment.TheGAtool contains
many predefined genetic operators, and users can also define
their own operators by writing some MATLAB scripts. As
this framework is a tool of MATLAB, it means that GAtool
requires MATLAB to be installed, and users have to get a
license to run the solver. Furthermore, theMATLAB software
does not support the handling and displaying of spatial data,
and the integration of GIS functions intoMATLAB is usually
challenging.
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From the above review of the well-known intelligence
optimization tools, we can conclude thatmost of the available
tools or libraries for solving optimization problems still
cannot directly meet the demands of spatial optimization. A
new integrated, universal, and extensible tool is needed to
advance the research into spatial optimization and to improve
the ability of decision support for practical applications.

3. Design and Implementation of the Tool

3.1. System Requirements Analysis

3.1.1. Spatial Modelling Needs Analysis. To develop a general
purpose tool, it is essential to analyze the fundamental
requirements of spatial optimization modelling. Like general
optimization problems, spatial optimization problems can
also be described as follows:

Max 𝑓 (𝑥)

Subject to : [C.E.]

[B.C.] ,

(1)

where 𝑓(𝑥) is the objective functions of the optimization
problems, and the constraints are conducted by “Subject to.”
“[C.E.]” is the condition equations, usually composed of a
series of equations or inequalities, and all the solutions should
meet these constraints. “[B.C.]” is the boundary conditions
of the optimization problem, which is used to specify the
domain of the decision variables.

However, compared with nonspatial optimization prob-
lems, spatial optimization problems are more complicated
and more particular.

(i) The representation of spatial optimization problems
is more complicated and more particular than non-
spatial problems. When using immune algorithms to
solve an optimization problem, the first step of the
process is to encode the solution of the problem into
“artificial antibodies” by using an encoding strategy
(binary, real number, etc.). Then, an antibody corre-
sponds to a solution to the problem, and each spatial
entity or variable of the solution is represented as a
“gene” in the antibody. However, the data structures,
which are used to represent the location and status of
the entities or variables, are usually more complicated
than in nonspatial problems. Therefore, researchers
usually have to redesign the encoding strategy and
data structures for each specific problem.

(ii) The objective functions of optimization problems are
distinct from each other, and most spatial optimiza-
tion problems are multiobjective problems. When
solving a spatial problem in geospatial modelling, the
design of the objective functions usually has to incor-
porate the ecological context and social and economic
criteria under some predetermined scenarios.

(iii) The constraints of spatial optimization problems
might include some complex spatial constraints such
as topological constraints. Furthermore, themutation

operation of antibodies is not usually completely
random but is conducted with some specific domain
knowledge. For example, when solving land-use spa-
tial allocation problems, the “mutation” operation
means to change the land-use type of some parcels.
Therefore, this operation should be implemented
based on the physical and socioeconomic properties
of the land. Furthermore, the properties of the neigh-
boring parcels should also be considered.

(iv) Solving spatial optimization problems requires cus-
tomization of the simple immune algorithms. Usually,
researchers have to customize the basic immune algo-
rithms to improve the performance of the algorithms,
especially in solving complex spatial problems. In
most cases, the immune algorithms can be improved
from the following two aspects: (i) hybridization with
other global optimization search algorithms such
as GA or ACO to avoid the algorithm falling into
a local optimum and (ii) incorporation of a local
search mechanism to accelerate the convergence of
the immune algorithm.

(v) The inputs/outputs of different spatial optimization
problems are distinct in content, structure, and for-
mat.

In summary, to determine the appropriate encoding
strategy, objective functions, constraints, and inputs/outputs
of the artificial immune model for spatial optimization is
the most important problem to the users. The steps or
operators mentioned above are problem-specific and should
be integrated into AITSO as standard application interfaces.
Furthermore, the process of the algorithm framework should
be extensible to meet the customization demands of the
algorithm.

3.1.2. User Needs Analysis. As a universal tool, we assume that
the users who might use this tool can be divided into the
following classes based on their background knowledge and
skills.

Immune Algorithm Researchers. These users are familiar with
immune algorithms and they are interested in improving the
performance of algorithms.These users can use the program-
ming interfaces provided by AITSO to develop advanced
immune operators. Once a new operator is developed and
integrated into AITSO, it can then be used to solve any
optimization problems.

Spatial Optimization Problem Researchers. These users have
rich experience in modeling and solving optimization prob-
lems. However, they might not be familiar with immune
algorithms. For these users, the only thing they have to do
is to focus on modeling the specific problems based on the
application programming interfaces provided by AITSO.

Decision Makers. This type of users might not have training
in programming. However, they are interested in solving
practical spatial optimization problems by the use of immune
algorithms. For these users, they can solve their problems by
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using the applications and the immune algorithms developed
by the former two types of users.

3.2. Software Design and Key Technologies of the Tool

3.2.1. Common Spatial OptimizationModel Design. A unified
spatial optimization model is a prerequisite for the establish-
ment of a universal tool. Such a model must meet two basic
requirements. For one thing, themodelmust be extensible as,
in practice, algorithms are usually revised and improved to
solve specific problems. The model should therefore be able
to integrate different algorithms and to customize the process
and operators. For another, the algorithms or operators that
are integrated into the framework must be reusable. When a
new algorithm or operator is developed, it should be able to
be used in other cases.

We referred to the principle proposed by Keijzer et al.
[32]. Here, the immune algorithms are decomposed into two
parts: one includes the common immune mechanism, and
the other is problem-specific. Two steps are included, as
follows [33, 34].

(1) As shown in Figure 1, most of the artificial immune
system based optimization algorithms can be decom-
posed into eight steps: initialization, evaluation, selec-
tion, cloning, mutation, reselection, replacement, and
decoding, and the details of the algorithm can be
found in the previous studies [34, 35]. In some
cases, to improve the performance of the algorithm,
some custom steps (e.g., crossover and hill climbing
algorithm) can be added to the process. Each of the
steps can be considered as an evolutionary unit, which
is used to carry out some special evolutionary task.
Based on the basic immune principles, researchers
can implement several particular versions of “opera-
tors” to accomplish a specific immune evolutionary
task. Therefore, users can combine the different ver-
sions of operators to form a new artificial immune
algorithm.

(2) All the immune operators mentioned above can be
divided into two categories, according to whether
or not the operator has to operate the genes of an
antibody. Since the data structure of genes is usually
problem-specific, the operators which need to change
the genes have to know the data structure of the
genes. The selection operator, reselection operator,
replacement operator, and the stopping criteria are
only concerned with the affinity of the antibodies
and are totally independent of the specific prob-
lems. Therefore, these operators can be considered
as common immune operators and can be used to
solve different problems. Other operators, such as
initialization operators, evaluation operators, clonal
operators, mutation operators, and decoding opera-
tors, are problem-specific and have to be redesigned
for particular problems.

A critical shortcoming of this design is that users still
have to redesign the problem-specific operators when the
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Figure 1: The common artificial immune model for spatial opti-
mization.

data structures of the genes are changed. For instance, the
mutation operators, which have to change the values or status
of the genes, are dependent on the exact data structures
of the genes. However, the functions used to operate the
genes are dependent on some particular data structures.
Nevertheless, the immune principle used to calculate the
mutation rate might be the same: the higher the affinity, the
smaller themutation rate [35].Therefore, we expect that these
data structure-dependent operators, with the same immune
principles, can also be reused. In order to achieve this goal,
we need more in-depth research.

As shown in Figure 2, the process of an immune algo-
rithm can be divided into several steps, which can be seen
as logical process units. Users can add some custom steps
to the process and adjust the execution order of each step
to accomplish the customization of the algorithm. Every
developer can develop operator plugins and release them
to AITSO to share their work. Hence, the operators can be
considered as the programming units. Furthermore, we hope
that every operator class can be used to package a group
of functions which have the same immune principles. As a
result, the immune evolutionary tasks are finally assigned to
the functions. In this sense, the functions are the real task
execution units.
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Figure 2: The hierarchical model of the unified optimization algo-
rithm framework.

The functions that do not have to operate the genes can
be applied to different problems directly, and the reuse of
the problem-specific functions is implemented by the use of
object-oriented technology. As stated above, the functions
that are used to operate the genes can be encapsulated into an
abstract class or interface to provide the immune operators
or functions with standard function interfaces to access the
genes.

3.2.2. Software Architecture Design. One of the most impor-
tant purposes of AITSO is to bridge the gaps between
immune algorithm researchers, spatial optimization problem
researchers, and decision makers. To achieve this goal and
to meet the different demands from these users, AITSO has
adopted a very flexible architecture based on a “plugin host”
structure to build the platform. As shown in Figure 3, AITSO
is composed of four key components: the foundation class
library, the immune operator library, the application library,
and the host program. The function and the relationships
between the four components are described as in Figure 3.

The foundation class library comprises the definition of
the fundamental abstract classes, interfaces, enumerations,
and some ancillary classes. These abstract classes and inter-
faces define the primary properties and behavior of the
immune operators, antibodies, and optimization problems.
Once a class implements all the properties and functions of
the “ICSOperator” interface, the host program will identify
it as a validated operator class. Similarly, the “ICSOptimiza-
tionProblem” interface is designed for developing application
plugins that are used for solving specific spatial optimization
problems.The abstract class “CSAntibody” is used for extend-
ing the data structures of the antibodies, and the parameters’
information is stored by using the “CSParameters” class.

All the immune operators are stored in a folder named
“Operators” in the form of dynamic link library (DLL) files.
Algorithm researchers or anybody who wants to improve the
performance of the algorithms can use the “ICSOperator”
interface to develop a novel operator plugin. When the host
program runs, the host programwill search theDLL files con-
tained in this folder and extract all the classes inherited from
the “ICSOperator.” After that, an instance of the operator
class will be activated by the reflection technology provided
by the .NET Framework. Finally, the information about the
operator class, such as the name, description, functions, and
the parameters, can also be extracted and displayed to users
through the GUI.

Similar to the “immune operator library,” the “application
library” is a folder named “Problems,” which stores many
application plugins. An application plugin is a DLL file which
has encapsulated one or more spatial optimization problem
classes inherited from “ICSOptimizationProblem.” Once an
application class is activated, the host program can obtain the
description and parameters from the instance of the class and
show them to the final users.

The major functionality of the host program is to link the
decision makers and underlying libraries, which include the
application library and immune operator library. Therefore,
the host program plays two crucial roles in the whole
platform. One is that it provides the user with a friendly GUI.
The application plugins and operator plugins are identified
based on the standard interfaces, and then the basic infor-
mation (name, description, parameters, etc.) of the plugins is
extracted and displayed to the user via the host’s GUI. Thus,
decision makers can accomplish their work interactively,
for example, choosing the corresponding application plugin,
customizing the immune algorithm, setting the parameters,
and configuring the inputs/outputs of the problem.The other
role of the host program is that it builds the process of
the model and carries out the optimization tasks. Once the
user has completely defined their problem and optimization
model, the host program will activate the instance of the
application and operator classes specified by the user. After
that, the model will be constructed dynamically, according to
the user’s configuration, to accomplish the computation task.

The key technology for customizing the spatial opti-
mization model is the design of the “CSStepInfo” class (see
Figure 4). Each instance of CSStepInfo records the model
steps information, including the execution order in the
model’s process, the operator class used for computation,
function name, and the parameters’ information gathered
from the GUI.Therefore, the process of the model, as defined
by the user, can be stored as an object array of the CSStepInfo
in the host program. Once the algorithm is started, it can
complete an iteration process by calling the “execute”member
function of each step objects stored in the array.

Furthermore, the “CSParameter” class was designed to
describe and manage the parameters of the model (see
Figure 4). All the parameters of the model should be pub-
lished, along with their metadata and description, since this
is essential to users when configuring the proper values for
the parameters. Furthermore, if the values of a parameter
are constrained to some special values or particular value
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Figure 4:The class schema diagramof “CSStepInfo” and “CSParam-
eter.”

ranges, the developers can also write these enumerations
or domain values into the “ParasDomain” property of the
class. Therefore, the host program can generate the proper
input controls (such as ComboBox and NumericUpDown)
for users, so as to guarantee that the input values are validated.

3.2.3. Spatial Optimization Applications Development Tech-
niques. As stated in Section 3.1, developers usually have
to redesign the encoding strategy, objective function, con-
straints, inputs, outputs, and the data structure of genes for
each spatial optimization problem. On the other hand, it is
advantageous that all the immune operators can be reused,
and the development of applications is simple enough.There-
fore, two interface/abstract classes were designed to encapsu-
late all these particular requirements. The architecture of a
typical application class and its relationship with the other
components in AITSO are illustrated in Figure 5, and the
schema diagram of the primary classes is shown in Figure 6.

The antibody is the fundamental operating unit in
immune algorithms, and it represents a solution to the opti-
mization problem. The abstract class “CSAntibody” defines
the basic properties and behaviors of the general antibodies.
Once a new encoding strategy is proposed, developers can
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create a problem-specific antibody class, inherited from
“CSAntibody,” and design the data structure for the genes. In
addition, the basic gene manipulation functions, “AddGene,”
“ClearGenes,” “GetGene,” “SetGene,” and “Clone,” should also
be implemented. Among these functions, the functionality of
“Clone” is to get an identical antibody to its parent, and it can
be employed by the clonal operators.

The “ICSOptimizationProblem” interface is composed
of two types of interfaces that are termed “user inter-
faces” and “function interfaces.” The “user interfaces” in the
“ICSOptimizationProblem” are a group of .NET Framework
“user controls.” The interfaces are designed for the end-user,
since they can provide the user with friendly wizards to
configure the parameters, constraints, inputs, and outputs.
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Figure 6:The schema diagramof the primary classes used for devel-
oping application plugins.

Once an application class is activated, the “user interfaces”
implemented in the “ICSOptimizationProblem” class will
be instantiated and integrated into the host program GUI
framework so as to gather parameters settings and so forth.

The “function interfaces” include six standard function
prototypes declared in “ICSOptimizationProblem.” They are
used to integrate the problem-specific gene-based opera-
tions and provide the immune operators with interfaces
for assessing the genes of an antibody. Among the six
function interfaces, the “CreateAb” function is used to create
a problem-specific antibody object, and it can be invoked
by the initialization operators; the “MutateAb” function is
used to change the values or status of the genes according
to the user-specified mutation rate under the constraints
or domain knowledge; and the objective functions used to
calculate the objective values and the affinity of the antibodies
are packaged into “EvaluateAb.” Some complexmethods such
as the paretodominance approach for dealing with multi-
objective problems and the penalty functions for handling
the constraints can also be integrated into “EvaluateAb,” as
needed. Furthermore, as the crossover operator has been
widely used in evolutionary algorithms, the “CrossOverAb”
function is defined to integrate the crossover mechanism to
improve the performance of the immune algorithm. Once
an optimization task is finished, the decoding operators can
call the “WriteOptimalResult” function to save the optimal
solution into the result file. The host program will also
load the results to a mapping window to visualize the
optimal solution and draw a convergence curve to analyze the
performance of the algorithm.

Developers can also package some other operators (local
search algorithms, etc.) into the algorithm by implementing
the “CustomOperator” function. For example, when solving
the traveling salesman problem (TSP), a 2-opt or k-opt local
search can be employed to improve the performance of
the algorithm [36]. We can implement all these algorithms
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into the class and call them through the “CustomOperator”
function.

3.2.4. Artificial Immune Algorithms Development Techniques.
In order to get a general understanding of how the immune
operator plugins work, the overall architecture of a typical
operator class and its relationship to the other components
in AITSO are illustrated in Figure 7. A typical operator class
comprises four key parts, including description, parameter
list, function repository, and the task execution center. For
each operator class, the descriptive information provides the
user with some essential information about the operator
class, which can be identified and represented by the host
program. The operator type information tags the execution
stage (selection, mutation, replacement, etc.) of the operator
class. Therefore, the host program can match the available
operators for each algorithm step, according to the “Type”
property of the operators. Developers can also provide the
user with some useful hints by writing information into the
“description text” when releasing their plugins.

The “function repository” usually comprises one or sev-
eral functions implementing various immune strategies. It
allows developers to package a group function into one
operator class. For example, as stated in Section 3, the
mutation rate is determined based on the affinity of each
antibody: the higher the affinity, the smaller the mutation
rate. This means that developers can design any formula
to calculate the mutation rate, as long as the formation
can implement the above principle, and package them into
the same operator class. Nevertheless, all functions should
be released together with their parameters and descriptive
information, so that users can get a grasp of the methods
to use, the functionality of the function, and can configure
validating parameters for the functions. Algorithm 1 is a
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for (int i = 1; i < nNewPop. Count; i++)

{

// nNewPop is a list object used to store antibodies

double nStdAff = (double)(nNewPop[i]. Affinity - MinAffinity)/nAffinityRange;

// Calculating the mutation rate based on the affinity of the

// antibody and the generation.

double nMutationRate = Math.Exp(−2 ∗ nStdAff)/(nCurGeneration);

CSAntibody nAb = nNewPop[i];

// nProblem is an instance of CSOptimizationProblem

// Call the standard interface "MutateAb" to accomplish the mutation operation

nProbiem. MutateAb(ref nAb, nMutationRate);

}

Algorithm 1: A C# code sample demonstrates how the common operator works.

simple example of implementation of the mutation function.
In this example, the mutation rate is calculated by using the
following formula [37]:

𝐹

(𝑎𝑏
𝑖
) =
𝐹 (𝑎𝑏
𝑖
) −min (𝐹 (𝑎𝑏

𝑖
))

max (𝐹 (𝑎𝑏
𝑖
)) −min (𝐹 (𝑎𝑏

𝑖
))
, 𝑖 = 1, 2, . . . , 𝑁

𝑐
,

𝑃
𝑚
=
exp (−2 ∗ 𝐹 (𝑎𝑏

𝑖
))

𝑡
,

(2)

where 𝐹(𝑎𝑏
𝑖
) is the affinity of an antibody,𝑁

𝑐
is the number

of antibodies in the new population, and 𝐹(𝑎𝑏
𝑖
) is the

normalized affinity of the antibody; 𝑃
𝑚
is the mutation rate

of an antibody; 2 is the empirical value to control the decay;
and 𝑡 is the current number of iterations.

Once an operator class is activated to carry out the evolu-
tion tasks, the population of antibodies and the parameters
will be sent to the instance of the operator from the host
program. Then, the host program will call the “execute”
method of the class to accomplish the specific task. There
are two parameters of the “execute” module: the population
is passed by using the “CSPopulation” parameter, and the
function used to execute the calculation task is specified
by the “function name” parameter. If the functions have
to operate the genes of the antibody, the standard gene
operation interfaces provided by “ICSOptimizationProblem”
are employed.

3.3. Main GUI and Features of the Tool. AITSO was devel-
oped based on the open-source DotSpatial GIS compo-
nents (http://dotspatial.codeplex.com/), which were devel-
oped based on the C# programming language and have been
widely used in many fields [29, 38].The C# 4.0 programming
language was chosen to develop AITSO, as with DotSpatial.
The technology of assembly reflection provided by the .NET
Framework is a very powerful and convenient tool for build-
ing operators or application plugins. Furthermore, parallel
programming technology has been introduced to the .NET
Framework 4.0, which is a very useful tool for promoting
the performance of computation. The main graphical user

Figure 8: Main GUI of AITSO.

interface (GUI) of AITSO is shown in Figure 8, and the GUI
for customizing the algorithm is shown in Figure 9.

As shown in Figure 8, AITSO has a main interface that
is similar to most desktop GIS programs, plus the addition
of tools associated with data visualization and analysis. The
basic GIS functionality of AITSO is powered by the open-
source DotSpatial GIS components. The artificial immune
system algorithms which are designed for spatial optimiza-
tion are organized as a tree list in the right dockable window.
Once an optimization task is started, the log and result will be
output in the corresponding windows at the bottom in real
time. Furthermore, users can suspend or terminate the task
when the algorithm is stagnated.

Figure 9 shows the main steps of the customization of the
immune algorithms in the system: (i) specify a step, which
needs to specify an operator, from the predefined steps or a
custom step added by a user; (ii) the details of the matching
operator classeswhich can be used in the current selected step
will be listed in the upper-right ComboBox control; (iii) the
names of the functions, which are packaged in the selected
operator class, will be listed in the following ComboBox
control; and (iv) once the function name is specified, the
parameters of the function will be added to the property grid
in the lower-right corner of the dialog, so that the user can set
the values for these parameters.
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the step

1

operator class 2

4

3

Description of the 
current selected step

Description of the 
current selected 

parameter

□Add/remove a step
□Adjust the order of

□ Select the

□Configure the parameters

□ Select the function name

Figure 9: Steps for customizing the spatial optimization model.

4. Application Examples

4.1. The Traveling Salesman Problem. To test the reusability
and the extensibility of the platform, we adopted the traveling
salesman problem (TSP) as a benchmark testing application.
TSP is a typical NP-hard combinatorial optimization problem
[39, 40]. It involves all aspects of combinatorial optimization
and has served as a benchmark problem for testing the
performance of algorithms [41].

To solve this problem in AITSO, we developed an appli-
cation plugin which integrates two key classes: “CSTSPAn-
tibody” and “CSTSPProblem.” The “CSTSPAntibody” class
inherited from the abstract “CSAntibody” class represents the
solutions of the problem. The affinity evaluation function,
inputs, and outputs are implemented in the “CSTSPProb-
lem” class inherited from the “ICSOptimizationProblem”
interface. Furthermore, to test the customization features of
AITSO and to improve the performance of the algorithm, the
crossover mechanism, which is a key operation in a genetic
algorithm,was introduced to the artificial immune algorithm.

The TSP dataset used for testing is the Eil51 dataset
chosen from the standard TSP library TSPLib95, which
has been used as a benchmark testing dataset (download
url: http://www.iwr.uni-heidelberg.de/groups/comopt/soft-
ware/TSPLIB95/tsp/) in many studies. The Eil51 dataset
comprises 51 cities, and the best known tour length of the
dataset is 429.1822 [39]. The parameters of the artificial
immune algorithm were set as follows: the population size
was 100 (including 15 memory antibodies), selection ratio
was 0.25, cloning coefficient was 0.5, mutation rate was
0.06, crossover rate was 0.4, and the replacement ratio
was 0.1. The stopping criterion was that the number of
generations exceeds 100. After several experiments, we got
the best solution to the problem with a tour length of 428.982
(see Figure 10), a little shorter than the 429.182 mentioned
above. These experiments were performed on a MacBook air
computer equipped with Intel I5-4250UCPU and 4GBRAM
and the average computation time to solve this problem is 6
seconds.

(a)

(b)

Figure 10: Results of the testing traveling salesman problem.

4.2. Optimization of the Design of Environmental Monitoring
Networks. An environmental monitoring network optimiza-
tion problem was employed to demonstrate how to solve
environmental modeling and spatial optimization problems
in AITSO. The experimental data source code used in this
case study can be downloaded from the website https://
AITSO.codeplex.com/.

Environmental monitoring networks, composed of sev-
eral monitoring stations, are used to capture environmental
pollution data or quality information of the air, water, and
soil of a specific area. The objective in the optimization of an
environmental monitoring network is to arrive at the optimal
number and spatial layout of the monitoring stations. This
is critical to environmental monitoring and assessment since
it can help to achieve an optimal configuration of the mon-
itoring stations while obtaining the pollution information
accurately under a minimum number of monitoring stations
and at least cost [42]. Therefore, the process of designing
the network can be seen as a typical spatial optimization
problem, and it has been an important research topic in the
environmental monitoring community [42–44].

The optimization problem designed for this case was the
optimization of the air qualitymonitoring network ofWuhan,
which is located in central China (coordinates: 30∘35N
114∘17E), with a population of over 10 million people (2011
census). As shown in Figure 11(a), the air quality monitoring
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Figure 11: Results of the testing environmental monitoring network optimization problem.

network of Wuhan is composed of nine monitoring stations.
The air qualitymonitoring network of this city has been in use
for several years. However, following the rapid growth of the
city, the monitoring area should also have been expanded. In
this case study, we assumed that the existing stations remain

unchanged, and some new stations need to be added to the
existingmonitoring network. To solve this problem, the study
area was first divided into a grid system in which each grid
cell (1 km × 1 km) is a candidate monitoring station. The grid
cells which are located in the rivers or lakes were deleted
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from the candidate station set, and the number of candidate
stations was 2529. Therefore, a spatial layout scheme of
the new stations was encoded into an antibody in artificial
immune system, and a gene of the antibody represents a
feasible location of the new stations.

Usually, optimization of the number and spatial layout
of the monitoring stations has to deal with some com-
plex influential factors, such as the contamination levels
of pollutants, cost and budget, population density, terrain
conditions, and spatial coverage. However, the main purpose
of this case study was to illustrate the basic principles and
methods for developing an optimization application in the
AITSO environment and to provide researchers with a simple
programming template. Therefore, in this case study, we
only considered the spatial coverage of the stations, and
the “minimization of the mean of the shortest distances”
(MMSD) criterion was adopted as the optimal objective of
the problem. MMSD aims to minimize the average of the
distances of all grid points to their nearest station [45]. The
objective values of the antibodies were calculated by the
following formula:

𝜙MMSD (𝑆) =
∑
𝑁

𝑖=0
𝑑 (𝑥
𝑖
, 𝑆)

𝑁
, (3)

where 𝑥
𝑖
is the 𝑖th grid and 𝑑(𝑥

𝑖
, 𝑆) is the distance between

grid 𝑥
𝑖
and the closest station in the monitoring network.

The numbers of new stations were specified in different
scenarios (one, two, or three) to simulate the optimiza-
tion of the monitoring network under different costs and
budgets. The optimal monitoring networks are shown in
Figures 11(b), 11(c), and 11(d), and the average computation
time to solve this application is about 750 seconds. It is
believed that the simulation result can help the policy makers
to build an optimal monitoring network, according to their
budget.

This case describes the general principles and methods
of using an immune algorithm to solve an environmental
monitoring network optimization problem in AITSO. In this
case, only the “MMSD” criterion was considered, and some
other important factors were not integrated into the objective
functions. However, this case could be extended to optimize
different types of environmental monitoring networks (soil,
water, disease, etc.) by integrating some important environ-
mental factors, such as the concentration of PM2.5 in the air
or the concentration of heavy metals in soil.

5. Conclusions and Discussion

Spatial optimization is a type of complicated and widespread
problem that is common in spatial planning and geocom-
putation.The artificial intelligence approaches have provided
effective solutions for solving these problems. Therefore, the
main contributions of this paper include the following. (i)
The characteristics of spatial optimization problems were
analyzed and summarized and then a general paradigm
for geospatial optimization modelling under the context of
geocomputation was proposed in this study. (ii) A unified
framework of spatial optimization model was developed to

model the geospatial problems in this paper. (iii) The freely
accessible tool AITSO, which integrates the artificial immune
system algorithms, has been developed as a flexible and
extensible tool for researchers and decision makers.

Since the initial testing of the tools demonstrates the
potential of AITSO as a flexible tool for the modeling of
practical spatial optimization problems such as spatial route
optimization and planning and environmental monitoring
network optimization, it is therefore believed that AITSO
will advance the development and popularity of spatial
optimization in spatial optimization modeling and decision
making. Benefiting from the loose “plugin host” architecture,
developers can easily implement their own problem-specific
application plugins or new immune operators based on foun-
dation APIs provided by AITSO to solve practical problems
or improve the performance of an algorithm. With these
standard interfaces, researchers can easily integrate their own
models and knowledge into the tool to solve some special
spatial problems. Furthermore, the technologies described
in this paper could also help developers to build universal
optimization tools based on some other algorithms, such as
genetic algorithms, evolution strategies, and particle swarm
optimization.

As a universal tool for spatial optimization, the present
software still has the following deficiencies, which will be
improved in the future: (i) only the clonal selection immune
model has been integrated into the tool; some other AIS
models such as aiNET have not yet been implemented.
Hence, these algorithms will also need to be implemented in
the future. (ii) The method used for solving multiobjective
problems is now based on a weight-based approach. Since
a lot of spatial optimization problems are multiobjective
problems, it will be crucial to integrate some more useful
multiobjective methods into AITSO, such as the paretodom-
inant strategy. (iii) The process of using artificial intelli-
gence algorithms to solve spatial problems is usually data-
intensive or computationally intensive [46]. Therefore, it will
be necessary to use parallel computing technology to improve
the performance of the algorithm. Parallel programming
technology, which is a new feature in .NETFramework 4, will
be used to take advantage of amulticore processor to increase
the computational efficiency of the algorithm. Furthermore,
we also plan to develop some problem-specific application
plugins for solving typical spatial optimization problems such
as spatial sampling design and land-use spatial allocation.
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